36 research outputs found

    The impact of n-3 PUFA supplementation on human skeletal muscle metabolism

    Get PDF
    The time course of this increase in muscle n-3 PUFA composition and anabolic protein expression is currently unknown. In Chapter 2 of this thesis ten healthy male participants consumed 5g.d-1 of n-3 PUFA-enriched fish oil for 4 weeks. Muscle biopsies samples were collected in the fasted, rested state 2 weeks prior, immediately before (Week 0), at Week 1, Week 2 and Week 4 after initiation of fish oil supplementation for assessment of changes in lipid composition and expression of anabolic signalling proteins over time. Muscle lipid profile, (% total n-3 PUFA/total fatty acids) increased from W0 to W2 (3.8 ± 0.2 to 5.1 ± 0.3 %) and continued to rise at W4 (6.7 ± 0.4 %). Total protein content of FAK increased from W0 to W4 (3.9 ± 1.5 fold) whereas total mTOR was increased from W0 at W1 (2.4 ± 0.6 fold) with no further significant increases at W2 and W4. For the first time this study demonstrates that oral fish oil consumption results in an increase of n-3 PUFA levels in human skeletal muscle that is associated with increases in the expression of anabolic signalling proteins. Our understanding of the anabolic signalling process that underpins muscle protein synthesis has been advanced by the application of the WB technique. However, the semi-quantitative nature and poor dynamic range associated with the WB technique may lead to incongruence regarding the molecular response of skeletal muscle to anabolic stimulation. Chapter 3 of this thesis developed and applied a quantitative in vitro [γ-32P] ATP kinase assay (KA) alongside a traditional WB methodology to assess p70S6K1 signalling responses in human skeletal muscle to RE and protein feeding. Following validation in tissue culture with rapamycin and optimization of the assay in human skeletal muscle, this methodology was tested in a physiologically relevant context. In this regard, six males performed unilateral resistance exercise (RE) followed by the consumption of 20 g of protein. Skeletal muscle biopsies were obtained at pre-RE, at 1 h and 3 h post-RE. In response to RE and protein consumption, p70S6K1 activity was significantly increased from pre-RE at 1 h and 3 h post-RE (8.84 ± 0.78 to 17.18 ± 2.62 and 15.62 ± 3.12 µU/mg). However, phosphorylated p70S6K1thr389 was not significantly elevated. To assess if a combined stimulus of RE and feeding can influence AMPK activity we directly measured AMPK activity. AMPK activity was suppressed from pre-RE at 3 h post-RE (24.15 ± 1.6 to 15.64 ± 1.07 mU/mg), whereas phosphorylated ACCser79 was unchanged. These data therefore highlight the utility of the KA to study skeletal muscle plasticity. Previous studies have shown that ingestion of n-3 PUFA potentiates the phosphorylation of mTORC1 and associated kinases in response to nutrition. However, no study has identified whether n-3 PUFA supplementation potentiates anabolic kinase activity when RE is performed prior to nutrient provision. In Chapter 4 of this thesis, twenty healthy males consumed 5g.d-1 of either fish oil (FO) or coconut oil (CO) capsules for 8 weeks. Muscle biopsy samples were collected in the fasted, rested state before and after 8 weeks of supplementation for assessment of changes in lipid composition. Following 8 weeks of supplementation muscle samples also were obtained at rest (Rest), post RE in both the exercise leg (Post-RE) and the rested leg (Pre-FED) and also at 3 h post RE and protein feeding from both the exercise leg (3 h post-REF) and rested leg (3 h post-FED). There was a 2-fold increase in muscle (5.53 ± 0.3 to 11.16 ± 0.45 % of total fatty acids) n-3 PUFA composition after supplementation in the FO group but no change in the CO group. Following supplementation there was an increase in p70S6K1 activity at 3 h post-REF from Rest in the CO group (5.6 ± 1.4 to 12.2 ± 2.1 µU/mg) but no change in the FO group. In the CO group, AMPKα2 was significantly increased at Post-RE from Rest (3.7 ± 0.7 to 9.9 ± 2.0 mU/mg). These data show that 8 weeks of n-3 PUFA enriched fish oil supplementation suppresses the activity of p70S6K1 in response to RE and protein feeding

    It Isn\u27t Easy Fighting Crime in a Tutu, but It Helps!

    Get PDF
    It Isn\u27t Easy Fighting Crime in a Tutu, but it helps! is a description of struggles and triumphs of a woman working in a male traditional job for the New Orleans Police Department. She worked as a civilian and as a police officer and police sergeant from 1970 until 1996. Several Essays are included to provide a glimpse of the lighter side of the badge, the human beings wearing them, and an appreciation of the culture and some neighborhoods of New Orleans

    Potato Protein Isolate Stimulates Muscle Protein Synthesis at Rest and with Resistance Exercise in Young Women

    Get PDF
    Skeletal muscle myofibrillar protein synthesis (MPS) increases in response to protein feeding and to resistance exercise (RE), where each stimuli acts synergistically when combined. The efficacy of plant proteins such as potato protein (PP) isolate to stimulate MPS is unknown. We aimed to determine the effects of PP ingestion on daily MPS with and without RE in healthy women. In a single blind, parallel-group design, 24 young women (21 ± 3 years, n = 12/group) consumed a weight-maintaining baseline diet containing 0.8 g/kg/d of protein before being randomized to consume either 25 g of PP twice daily (1.6 g/kg/d total protein) or a control diet (CON) (0.8 g/kg/d total protein) for 2 wks. Unilateral RE (~30% of maximal strength to failure) was performed thrice weekly with the opposite limb serving as a non-exercised control (Rest). MPS was measured by deuterated water ingestion at baseline, following supplementation (Rest), and following supplementation + RE (Exercise). Ingestion of PP stimulated MPS by 0.14 ± 0.09 %/d at Rest, and by 0.32 ± 0.14 %/d in the Exercise limb. MPS was significantly elevated by 0.20 ± 0.11 %/d in the Exercise limb in CON (p = 0.008). Consuming PP to increase protein intake to levels twice the recommended dietary allowance for protein augmented rates of MPS. Performance of RE stimulated MPS regardless of protein intake. PP is a high-quality, plant-based protein supplement that augments MPS at rest and following RE in healthy young women

    An intron variant of the GLI family zinc finger 3 (GLI3) gene differentiates resistance training-induced muscle fiber hypertrophy in younger men

    Get PDF
    We examined the association between genotype and resistance training-induced changes (12 wk) in dual x-ray energy absorptiometry (DXA)-derived lean soft tissue mass (LSTM) as well as muscle fiber cross-sectional area (fCSA; vastus lateralis; n = 109; age = 22 ± 2 y, BMI = 24.7 ± 3.1 kg/m2). Over 315 000 genetic polymorphisms were interrogated from muscle using DNA microarrays. First, a targeted investigation was performed where single nucleotide polymorphisms (SNP) identified from a systematic literature review were related to changes in LSTM and fCSA. Next, genome-wide association (GWA) studies were performed to reveal associations between novel SNP targets with pre- to post-training change scores in mean fCSA and LSTM. Our targeted investigation revealed no genotype-by-time interactions for 12 common polymorphisms regarding the change in mean fCSA or change in LSTM. Our first GWA study indicated no SNP were associated with the change in LSTM. However, the second GWA study indicated two SNP exceeded the significance level with the change in mean fCSA (P = 6.9 × 10–7 for rs4675569, 1.7 × 10–6 for rs10263647). While the former target is not annotated (chr2:205936846 (GRCh38.p12)), the latter target (chr7:41971865 (GRCh38.p12)) is an intron variant of the GLI Family Zinc Finger 3 (GLI3) gene. Follow-up analyses indicated fCSA increases were greater in the T/C and C/C GLI3 genotypes than the T/T GLI3 genotype (P \u3c.05). Data from the Auburn cohort also revealed participants with the T/C and C/C genotypes exhibited increases in satellite cell number with training (P \u3c.05), whereas T/T participants did not. Additionally, those with the T/C and C/C genotypes achieved myonuclear addition in response to training (P \u3c.05), whereas the T/T participants did not. In summary, this is the first GWA study to examine how polymorphisms associate with the change in hypertrophy measures following resistance training. Future studies are needed to determine if the GLI3 variant differentiates hypertrophic responses to resistance training given the potential link between this gene and satellite cell physiology

    Nutrition Strategies for Triathlon

    Get PDF
    Contemporary sports nutrition guidelines recommend that each athlete develop a personalised, periodised and practical approach to eating that allows him or her to train hard, recover and adapt optimally, stay free of illness and injury and compete at their best at peak races. Competitive triathletes undertake a heavy training programme to prepare for three different sports while undertaking races varying in duration from 20 min to 10 h. The everyday diet should be adequate in energy availability, provide CHO in varying amounts and timing around workouts according to the benefits of training with low or high CHO availability and spread high-quality protein over the day to maximise the adaptive response to each session. Race nutrition requires a targeted and well-practised plan that maintains fuel and hydration goals over the duration of the specific event, according to the opportunities provided by the race and other challenges, such as a hot environment. Supplements and sports foods can make a small contribution to a sports nutrition plan, when medical supplements are used under supervision to prevent/treat nutrient deficiencies (e.g. iron or vitamin D) or when sports foods provide a convenient source of nutrients when it is impractical to eat whole foods. Finally, a few evidence-based performance supplements may contribute to optimal race performance when used according to best practice protocols to suit the triathlete’s goals and individual responsiveness

    The effects of acute leucine or leucine–glutamine co-ingestion on recovery from eccentrically biased exercise

    Get PDF
    This study investigated the effects of leucine or leucine + glutamine supplementation on recovery from eccentric exercise. In a double-blind independent groups design, 23 men were randomly assigned to a leucine (0.087 g/kg; n = 8), leucine + glutamine (0.087 g/kg + glutamine 0.3 g/kg; n = 8) or placebo (0.3 g/kg maltodextrin; n = 7) group. Participants performed 5 sets of drop jumps, with each set comprising 20 repetitions. Isometric knee-extensor strength, counter-movement jump (CMJ) height, delayed-onset muscle soreness (DOMS) and creatine kinase (CK) were measured at baseline, 1, 24, 48 h and 72 h post-exercise. There was a time × group interaction for isometric strength, CMJ and CK (P < 0.05), with differences between the leucine + glutamine and placebo group at 48 h and 72 h for strength (P = 0.013; d = 1.43 and P < 0.001; d = 2.06), CMJ (P = 0.008; d = 0.87 and P = 0.019; d = 1.17) and CK at 24 h (P = 0.012; d = 0.54) and 48 h (P = 0.010; d = 1.37). The leucine group produced higher strength at 72 h compared to placebo (P = 0.007; d = 1.65) and lower CK at 24 h (P = 0.039; d = 0.63) and 48 h (P = 0.022; d = 1.03). Oral leucine or leucine + glutamine increased the rate of recovery compared to placebo after eccentric exercise. These findings highlight potential benefits of co-ingesting these amino acids to ameliorate recovery

    Leucine supplementation enhances integrative myofibrillar protein synthesis in free-living older men consuming lower-and higher-protein diets : A parallel-group crossover study1

    No full text
    Background: Leucine co-ingestion with lower-protein (LP)–containing meals may overcome the blunted muscle protein synthetic response to food intake in the elderly but may be effective only in individuals who consume LP diets. Objective: We examined the impact of leucine co-ingestion with mixed macronutrient meals on integrated 3-d rates of myofibrillar protein synthesis (MyoPS) in free-living older men who consumed higher protein (HP) (1.2 g · kg–1 · d–1) or LP (0.8 g · kg–1 · d–1) in rested and resistance exercise (REX) conditions. Design: In a crossover design, 20 healthy older men [aged 65–85 y] were randomly assigned to receive LP or HP diets while ingesting a placebo (days 0–2) and Leu supplement (5 g leucine/meal; days 3–5) with their 3 main daily meals. A bout of unilateral REX was performed during the placebo and Leu treatments. Ingested 2H2O and skeletal muscle biopsies were used to measure the 3-d integrated rate of MyoPS during the placebo and Leu treatments in the rested and REX legs. Results: Leucinemia was higher with Leu treatment than with placebo treatment (P < 0.001). MyoPS was similar in LP and HP during both treatments (P = 0.39) but was higher with Leu treatment than with placebo treatment in the rested (pooled mean ± SD: Leu, 1.57% ± 0.11%/d; placebo, 1.48% ± 0.08%/d; main effect of treatment: P < 0.001) and REX (pooled mean: Leu, 1.87% ± 0.09%/d; placebo, 1.71 ± 0.10%/d; main effect of treatment: P < 0.001) legs. Conclusions: Leu co-ingestion with daily meals enhances integrated MyoPS in free-living older men in rested and REX conditions and is equally effective in older men who consume daily protein intakes greater than or equal to the RDA. This trial was registered at clinicaltrials.gov as NCT02371278

    Short-term aerobic conditioning prior to resistance training augments muscle hypertrophy and satellite cell content in healthy young men and women

    No full text
    Factors influencing inter-individual variability of responses to resistance training (RT) remain to be fully elucidated. We have proposed the importance of capillarization in skeletal muscle for the satellite cell (SC) response to RT-induced muscle hypertrophy, and hypothesized that aerobic conditioning (AC) would augment RT-induced adaptations. Fourteen healthy young (22 ± 2 years) men and women underwent AC via 6 weeks of unilateral cycling followed by 10 weeks of bilateral RT to investigate how AC alters SC content, activity, and muscle hypertrophy following RT. Muscle biopsies were taken at baseline (unilateral), post AC (bilateral), and post RT (bilateral) in the aerobically conditioned (AC + RT) and unconditioned (RT) legs. Immunofluorescence was used to determine muscle capillarization, fiber size, SC content, and activity. Type I and type II fiber cross-sectional area (CSA) increased following RT, and when legs were analyzed independently, AC + RT increased type I, type II, and mixed-fiber CSA, where the RT leg tended to increase type II (p =.05), but not type I or mixed-fiber CSA. SC content, activation, and differentiation increased with RT, where type I total and quiescent SC content was greater in AC + RT compared to the RT leg. Those with the greatest capillary-to-fiber perimeter exchange index before RT had the greatest change in CSA following RT and a significant relationship was observed between type II fiber capillarization and the change in type II-fiber CSA with RT (r = 0.35). This study demonstrates that AC prior to RT can augment RT-induced muscle adaptions and that these differences are associated with increases in capillarization

    Fish oil supplementation suppresses resistance exercise and feeding-induced increases in anabolic signaling without affecting myofibrillar protein synthesis in young men

    Get PDF
    Fish oil (FO) supplementation potentiates muscle protein synthesis (MPS) in response to a hyperaminoacidemic–hyperinsulinemic infusion. Whether FO supplementation potentiates MPS in response to protein ingestion or when protein ingestion is combined with resistance exercise (RE) remains unknown. In a randomized, parallel group design, 20 healthy males were randomized to receive 5 g/day of either FO or coconut oil control (CO) for 8 weeks. After supplementation, participants performed a bout of unilateral RE followed by ingestion of 30 g of whey protein. Skeletal muscle biopsies were obtained before and after supplementation for assessment of muscle lipid composition and relevant protein kinase activities. Infusion of l‐[ring‐13C6] phenylalanine was used to measure basal myofibrillar MPS at rest (REST), in a nonexercised leg following protein ingestion (FED) and following RE and protein ingestion (FEDEX). MPS was significantly elevated above REST during FEDEX in both the FO and CO groups, but there was no effect of supplementation. There was a significant increase in MPS in both groups above REST during FED but no effect of supplementation. Supplementation significantly decreased panPKB activity at REST in the FO group but not the CO group. There was a significant increase from REST at post‐RE for PKB and AMPKα2 activity in the CO group but not in the FO group. In FEDEX, there was a significant increase in p70S6K1 activity from REST at 3 h in the CO group only. These data highlight that 8 weeks of FO supplementation alters kinase signaling activity in response to RE plus protein ingestion without influencing MPS
    corecore